

Suez University Faculty of Petroleum and Mining Engineering BSE225, Spring Term 16-17

Binary Logic

Lecture 4 – Monday March 13, 2017

1

- Boolean Logic
- Boolean Algebra
- Binary Variables
- Binary Operators
 - Logical AND
 - Logical OR
 - Logical Negation
- Boolean Expressions
- Logic Gates
- Logic Circuits
- Summary

• <u>Boolean Logic</u>

- Boolean Algebra
- Binary Variables
- Binary Operators
 - Logical AND
 - Logical OR
 - Logical Negation
- Boolean Expressions
- Logic Gates
- Logic Circuits
- Summary

Boolean Logic

- Boolean logic is a branch of mathematics that deals with rules for manipulating two logical values **true** and **false**.
- It was named after George Boole.

George Boole (1815-1864) British mathematician and philosopher

- Boolean logic is simply a way of comparing individual bits.
- Why is Boolean logic so relevant to computers?

- Straightforward mapping to binary digits!
- Binary digit values can be thought of as: ON/OFF, High/Low, Yes/No, 1/O

- Boolean Logic
- <u>Boolean Algebra</u>
- Binary Variables
- Binary Operators
 - Logical AND
 - Logical OR
 - Logical Negation
- Boolean Expressions
- Logic Gates
- Logic Circuits
- Summary

Boolean Algebra

• An algebra in which elements have one of two values and the algebraic operations defined on the set are logical OR, a type of addition, and logical AND, a type of multiplication.

- Boolean Logic
- Boolean Algebra
- <u>Binary Variables</u>
- Binary Operators
 - Logical AND
 - Logical OR
 - Logical Negation
- Boolean Expressions
- Logic Gates
- Logic Circuits
- Summary

Binary Variables

- Binary variables take on one of two values, true or false.
- Variable identifiers: A, B, C, X, Y,

- Boolean Logic
- Boolean Algebra
- Binary Variables
- <u>Binary Operators</u>
 - Logical AND
 - Logical OR
 - Logical Negation
- Boolean Expressions
- Logic Gates
- Logic Circuits
- Summary

Binary Operators

- Logical AND
- Logical OR
- Logical Negation (NOT).

- AND is denoted by a dot (·)
- Consider two logic variables A and B and the result is C.
- C is true if and only if A is true AND B is true

In order for current to flow, both switches must be closed

$$C = A.B$$

Truth '	Table
---------	-------

Inputs		Output
A	В	C=A.B
0	0	0
0	1	0
1	0	0
1	1	1

If both the Person Sensor **AND** the Alarm Switch are on then the Burglar Alarm is activated

• (A AND B) yields true only if both A and B are true.

Example: Adult blood pressure is considered normal at 120/80 where the first number is the systolic pressure and the second is the diastolic pressure.

- A = True if Systolic Pressure = 120
- B = True if Diastolic Pressure = 80
- $C = True \implies$ Blood pressure is normal

C = A.B

L4, BSE225: 2016-2017 Suez University © Dr. Alaa Khamis

Diastolic Pressure

• Example-2: Google Search

About 42,400 results (1.02 seconds)

[PDF] Untitled - AUC - The American University in Cairo schools.aucegypt.edu/Sustainability/CSD/.../Brochure3%20ENG%20fin%204x.pdf ▼ Alexandria University. Egypt. Suez Canal University. Egypt. The American University in Cairo. Egypt. Wadi Environmental Science. Centre, WESC. Egypt.

[PDF] Introducing Entrepreneurship Into The Public University Scheme In ...

[PDF] Dr. Adly T. Fam

https://documents.aucegypt.edu/docs/about_naqaae/NAQAAE_Team_Bios.pdf • Professor of Engineering, Buffalo University, New York. State. Dr. Adly T. Fam the faculty of medicine at Suez Canal University (SCU). Dr. Rashwan headed ...

[PDF] Download PDF - South Dakota State University

www.sdstate.edu/international-affairs/upload/Suez-Canal-University-and-SDSU.PDF
WHEREAS, Suez Canal University (including branches at Ismailia, El-Arish, Suez, and Port Said)
and. South Dakota State University wish to broaden their ...

[PDF] S U E Z AT S I X T Y - UCSB History Department - University of ... www.history.ucsb.edu/wp-content/uploads/Suez-at-Sixty-Friday-schedule.pdf ▼ \$ U E Z AT S I X T Y. Remembering the Suez Crisis and War of 1956. FRIDAY, October 21—Harbor Room, University Center, UCSB. 1:30–1:45 ...

[PDF] Impact of Red Sea Fish Migrants through the Suez Canal - CiteSeerX https://environment.yale.edu/publication-series/documents/.../0-9/103golani.pdf ▼ by D Golani - Cited by 89 - Related articles

Daniel Golani. The Hebrew University of Jerusalem. ABSTRACT. The invasion of Red Sea organisms through the Suez Canal, known as "Lessepsian migration" \ldots

[PDF] The Prevalence of Irritable Bowel Syndrome among Medical and Non... citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.975.8649&rep=rep1... ▼ by MM Darwesh - 2015 - Cited by 2 - Related articles May 22, 2015 - Faculty of Medicine, Suez Canal University, Ismailia, Egypt ... of irritable bowel syndrome (IBS) among Suez Canal university students.

operator:parameter

filetype:pdf will search for pdf only.

site:edu will search all site in edu top domain.

suez university filetype:pdf AND site:edu will search for pdf and all site in edu top domain.

- OR is denoted by a plus (+)
- Consider two logic variables A and B and the result is C.
- C is true if A is true OR B is true

Inputs		Output	
А	В	C = A + B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

ON/OFF

Front Doorbell Switch

ON/OFF

If either the Front Doorbell Switch **OR** the Back Doorbell Switch is pressed then the Doorbell rings

• (A OR B) yields true only if either A or B, or both are true.

Example: Adult blood pressure is considered normal at 120/80 where the first number is the systolic pressure and the second is the diastolic pressure.

- A = True if Systolic Pressure \neq 120
- B = True if Diastolic Pressure $\neq 80$
- $C = True \implies Blood pressure is abnormal$

C = A + B

L4, BSE225: 2016-2017 Suez University © Dr. Alaa Khamis

Diastolic Pressure

• Example-2: Google Search

Suez University Faculty of petrolum & Mining Eng - Academia.edu suezuniv.academia.edu/ • Academia.edu is a place to share and follow research.

Suez Canal University | Suez University, Faculty of Education, D. of ... https://scuegypt.academia.edu/.../Suez_University..._/Documents

Translate this page Academia.edu is a place to share and follow research.

ahmed bhran | Suez University Faculty of petrolum & Mining Eng ... suezuniv.academia.edu/ahmedbhran

ahmed bhran, Suez University Faculty of petrolum & Mining Eng, Refining and Petrochemical Enginnering Department, Faculty Member. Studies Environmental ...

Suez Canal University, Faculty of Medicine (Egypt) - VIVO vivo.med.cornell.edu/display/org-200001001 *

Suez Canal University, Faculty of Medicine (Egypt) University uni icon. ©2017 VIVO Project | Terms of Use | Powered by VIVO · About · Contact Us · Support.

operator:parameter

filetype:pdf will search for pdf only.

site:edu will search all site in edu top domain.

suez university filetype:pdf OR site:edu will search for pdf or all site in edu top domain.

Binary Operators: Logical Negation

- NOT is denoted by a bar (⁻) over, a single quote mark
 (') after, or ~ before the variable.
- Consider a logic variable A and the result is C.
- C is true if A is false and vice versa.

•
$$C = A$$
 or $C = A'$ or $C = \sim A$

Binary Operators: Logical Negation

Temperature detector (Above 20°C) ON/OFF

If the temperature is above 20°C then the Central Heating is switched off.

If the temperature is below 20°C then the Central Heating is switched on

Binary Operators: Logical Negation

- Inverts its operand.
- Example: Adult blood pressure is considered normal at 120/80 where the first number is the systolic pressure and the second is the diastolic pressure.
 - A = True if Systolic Pressure = 120
 - $\overline{A} = False \implies Systolic Pressure \neq 120$
 - B = True if Diastolic Pressure = 80
 - $B = False \implies Diastolic Pressure \neq 80$

Systolic Pressure

Diastolic Pressure

Logic Gates: NOT Gate • Street Light ON/OFF Switch Street Light Light sensor (LDR) ON/OFF Bright=1, Dark=0 Switch **Street light** LDR Dark On On **Bright** On On Off Dark On **Bright** Off Off

Logic Gates

• Fire alarm security system

Exercise: The system shown is not functioning well. Suggest a modification in order to make the system works.

- Boolean Logic
- Boolean Algebra
- Binary Variables
- Binary Operators
 - Logical AND
 - Logical OR
 - Logical Negation

Boolean Expressions

- Logic Gates
- Logic Circuits
- Summary

Boolean Expressions

• Basic operations:

C = A.B is read "C is equal to A and B."

z = x + y is read "z is equal to x OR y."

 $D = \overline{A}$ is read "D is equal to NOT A."

• Using the basic operations, we can form more complex expressions:

$$Z = (A.B + C) + X.Y$$

- If A=True, B=False, C=True, X=True, Y=False.
- Z=(True.False+True)+False.False

=(False+True)+False=True+False=True

Boolean Expressions

• Example

Assuming that x=-10, y=50, and z=60 determine the value of the following Boolean expression:

(0<x<50)AND(50<y<100)OR([y-x]=z)

 $(0 < x < 50) \Rightarrow (0 < [-10] < 50) \Rightarrow FALSE$

 $(50 < y < 100) \Rightarrow (50 < 50 < 100) \Rightarrow FALSE$

```
([50-(-10)]=60) \Rightarrow (60=60) \Rightarrow TRUE
```

FALSE AND FALSE \Rightarrow FALSE

```
FALSE OR TRUE \Rightarrow TRUE
```

Boolean Expressions: Operator Precedence

- NOT has the highest precedence, followed by AND, and then OR.
- All higher-precedence operators are evaluated before any lower-precedence operators.
- Operators at the same precedence are evaluated left-toright.

Boolean Expressions: Operator Precedence

• Parentheses can be used to override operator precedence.

Boolean Expressions: Truth Table

• A truth table represents all possible values of an expression given the possible values of its inputs.

• How do we build a truth table?

- Step 1: Create columns for all variables
- Step 2: Determine the number of rows needed (how many rows should appear?) \Rightarrow For n inputs, # of rows is 2^n .
- Step 3: Define all possible values for the inputs starting from all 0's to all 1's, e.g. for 3 input variables from 000 to 111
- Step 4: Find the value of the expression for each input value and fill in the table.

Boolean Expressions: Truth Table

- Example: Boolean expression F = X + Y.Z
- Inputs: X, Y, Z
- Outputs: F
- # of inputs=n=3
- # of columns=#of inputs + #of outputs=4
- # of rows=2ⁿ=2³=8

Inputs			Output
Х	Y	Ζ	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

- Boolean Logic
- Boolean Algebra
- Binary Variables
- Binary Operators
 - Logical AND
 - Logical OR
 - Logical Negation
- Boolean Expressions

Logic Gates

- Logic Circuits
- Summary

Logic Gates

- A logic gates is an electronic device that operates on a collection of binary inputs to produce a binary output.
- The three basic logic gates are: AND gate, OR gate, NOT gate.

Logic Gates: AND Gate

• AND (product) of two inputs.

AND gate

Inputs		Output
А	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Logic Gates: OR Gate

• OR (sum) of two inputs.

OR gate

Inputs		Output	
А	В	A+B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Logic Gates: NOT Gate

• NOT (complement) of one input.

NOT gate

Input	Output
А	Ā
0	1
1	0

- Boolean Logic
- Boolean Algebra
- Binary Variables
- Binary Operators
 - Logical AND
 - Logical OR
 - Logical Negation
- Boolean Expressions
- Logic Gates

Logic Circuits

• Summary

Logic Circuits

Χ

Ζ

• A circuit is a collection of logic gates that implements one or more Boolean expressions.

F

Example-1: Boolean expression $\mathbf{F} = \mathbf{X} + \mathbf{Y}.\mathbf{Z}$

Inputs: X, Y, Z

Outputs: F

Logic Circuit

	Inputs	Output	
X	Y	Ζ	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Y

Logic Circuits

Logic Circuit - Half Adder

Logic Circuits

Example-3: Determine the Boolean expression of the following circuit and construct the corresponding truth table considering that a and b are the input signals.

- Boolean Logic
- Boolean Algebra
- Binary Variables
- Binary Operators
 - Logical AND
 - Logical OR
 - Logical Negation
- Boolean Expressions
- Logic Gates
- Logic Circuits

• <u>Summary</u>

Summary

- Boolean Algebra is a mathematical tool used in the analysis and design of digital circuits.
- OR, AND, NOT: basic Boolean operations.
- OR: HIGH output when any input is HIGH.
- AND: HIGH output only when all inputs are HIGH.
- NOT: output is the opposite logic level as the input.
- The order of evaluation in Boolean Expressions is: Parentheses, NOT, AND, OR.
- A logic gates is an electronic device that operates on a collection of binary inputs to produce a binary output.